VARIANT CJD (vCJD) or nvCJD

New Variant Creutzfeldt Jakob Disease nvCJD, was linked to young people and BSE in the U.K., aka mad cow disease...

My Photo
Name:
Location: BACLIFF, Texas, United States

My mother was murdered by what I call corporate and political homicide i.e. FOR PROFIT! she died from a rare phenotype of CJD i.e. the Heidenhain Variant of Creutzfeldt Jakob Disease i.e. sporadic, simply meaning from unknown route and source. I have simply been trying to validate her death DOD 12/14/97 with the truth. There is a route, and there is a source. There are many here in the USA. WE must make CJD and all human TSE, of all age groups 'reportable' Nationally and Internationally, with a written CJD questionnaire asking real questions pertaining to route and source of this agent. Friendly fire has the potential to play a huge role in the continued transmission of this agent via the medical, dental, and surgical arena. We must not flounder any longer. ...TSS

Thursday, August 07, 2014

A Test for Creutzfeldt–Jakob Disease Using Nasal Brushings

Original Article

 
A Test for Creutzfeldt–Jakob Disease Using Nasal Brushings

 
Christina D. Orrú, Ph.D., Matilde Bongianni, Ph.D., Giovanni Tonoli, M.D., Sergio Ferrari, M.D., Andrew G. Hughson, M.S., Bradley R. Groveman, Ph.D., Michele Fiorini, Ph.D., Maurizio Pocchiari, M.D., Salvatore Monaco, M.D., Byron Caughey, Ph.D., and Gianluigi Zanusso, M.D., Ph.D.

 
N Engl J Med 2014; 371:519-529August 7, 2014DOI: 10.1056/NEJMoa1315200

 
Share: Background Definite diagnosis of sporadic Creutzfeldt–Jakob disease in living patients remains a challenge. A test that detects the specific marker for Creutzfeldt–Jakob disease, the prion protein (PrPCJD), by means of real-time quaking-induced conversion (RT-QuIC) testing of cerebrospinal fluid has a sensitivity of 80 to 90% for the diagnosis of sporadic Creutzfeldt–Jakob disease. We have assessed the accuracy of RT-QuIC analysis of nasal brushings from olfactory epithelium in diagnosing sporadic Creutzfeldt–Jakob disease in living patients.

 
Methods We collected olfactory epithelium brushings and cerebrospinal fluid samples from patients with and patients without sporadic Creutzfeldt–Jakob disease and tested them using RT-QuIC, an ultrasensitive, multiwell plate–based fluorescence assay involving PrPCJD-seeded polymerization of recombinant PrP into amyloid fibrils.

 
Results The RT-QuIC assays seeded with nasal brushings were positive in 30 of 31 patients with Creutzfeldt–Jakob disease (15 of 15 with definite sporadic Creutzfeldt–Jakob disease, 13 of 14 with probable sporadic Creutzfeldt–Jakob disease, and 2 of 2 with inherited Creutzfeldt–Jakob disease) but were negative in 43 of 43 patients without Creutzfeldt–Jakob disease, indicating a sensitivity of 97% (95% confidence interval [CI], 82 to 100) and specificity of 100% (95% CI, 90 to 100) for the detection of Creutzfeldt–Jakob disease. By comparison, testing of cerebrospinal fluid samples from the same group of patients had a sensitivity of 77% (95% CI, 57 to 89) and a specificity of 100% (95% CI, 90 to 100). Nasal brushings elicited stronger and faster RT-QuIC responses than cerebrospinal fluid (P<0 .001="" 105="" 107="" approximately="" at="" between-group="" brushings="" cerebrospinal="" comparison="" concentrations="" contained="" fluid.="" for="" greater="" in="" individual="" logs10="" of="" p="" prion="" response="" seeds="" several="" strength="" than="" the="" to="">
 
Conclusions In this preliminary study, RT-QuIC testing of olfactory epithelium samples obtained from nasal brushings was accurate in diagnosing Creutzfeldt–Jakob disease and indicated substantial prion seeding activity lining the nasal vault. (Funded by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and others.)

 
Supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (NIAID), by a grant from Fondazione Cariverona (Disabilità cognitiva e comportamentale nelle demenze e nelle psicosi, to Dr. Monaco), by a grant from the Italian Ministry of Health (RF2009-1474758, to Drs. Zanusso and Pocchiari), by a grant from the Creutzfeldt–Jakob Disease Foundation (to Dr. Orrú), by a fellowship from Programma Master and Back–Percorsi di rientro (PRR-MAB-A2011-19199, to Dr. Orrú), and by donations to the NIAID Gift Fund from Mary Hilderman Smith, Zoë Smith Jaye, and Jenny Smith Unruh, in memory of Jeffrey Smith.

 
Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

 
Drs. Orrú and Bongianni contributed equally to this article.

 
We thank our many colleagues (see Acknowledgments in the Supplementary Appendix) for their support of this project and for assistance with the preparation of earlier versions of the manuscript.

 
Source Information From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Hamilton, MT (C.D.O., M.B., A.G.H., B.R.G., B.C.); and the Department of Biomedical Sciences, University of Cagliari, Cagliari (C.D.O.), the Department of Neurologic and Movement Sciences, University of Verona, Verona (M.B., S.F., M.F., S.M., G.Z.), Clinica Otorinolaringoiatrica, Policlinico G.B. Rossi, Azienda Ospedaliera Universitaria Integrata, Verona (G.T.), and the Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome (M.P.) — all in Italy.

 
Address reprint requests to Dr. Caughey at Rocky Mountain Laboratories, NIAID, 903 S. 4th St., Hamilton, MT 59840, or at bcaughey@nih.gov; or to Dr. Zanusso at Policlinico G.B. Rossi, Piazzale L.A. Scuro, 10, 37134 Verona, Italy, or at gianluigi.zanusso@univr.it.

 
http://www.nejm.org/doi/full/10.1056/NEJMoa1315200?query=featured_home

 
Wednesday, July 23, 2014
 
After the storm? UK blood safety and the risk of variant Creutzfeldt-Jakob Disease
 
 
Monday, June 02, 2014
 
Confirmed Human BSE aka mad cow Variant CJD vCJD or nvCJD Case in Texas
 
 
Sunday, June 29, 2014
 
Transmissible Spongiform Encephalopathy TSE Prion Disease North America 2014
 
 
Thursday, August 07, 2014
 
Prions in the Urine of Patients with Variant Creutzfeldt–Jakob Disease
 
Original Article
 
 
 
TSS

Prions in the Urine of Patients with Variant Creutzfeldt–Jakob Disease

Original Article

 
Prions in the Urine of Patients with Variant Creutzfeldt–Jakob Disease

 
Fabio Moda, Ph.D., Pierluigi Gambetti, M.D., Silvio Notari, Ph.D., Luis Concha-Marambio, B.Sc., Marcella Catania, Ph.D., Kyung-Won Park, Ph.D., Emanuela Maderna, B.Sc., Silvia Suardi, B.Sc., Stéphane Haïk, M.D., Ph.D., Jean-Philippe Brandel, M.D., James Ironside, M.D., Richard Knight, M.D., Fabrizio Tagliavini, M.D., and Claudio Soto, Ph.D.

 

N Engl J Med 2014; 371:530-539August 7, 2014DOI: 10.1056/NEJMoa1404401

 
Background

 
Prions, the infectious agents responsible for transmissible spongiform encephalopathies, consist mainly of the misfolded prion protein (PrPSc). The unique mechanism of transmission and the appearance of a variant form of Creutzfeldt–Jakob disease, which has been linked to consumption of prion-contaminated cattle meat, have raised concerns about public health. Evidence suggests that variant Creutzfeldt–Jakob disease prions circulate in body fluids from people in whom the disease is silently incubating.

 
Methods

 
To investigate whether PrPSc can be detected in the urine of patients with variant Creutzfeldt–Jakob disease, we used the protein misfolding cyclic amplification (PMCA) technique to amplify minute quantities of PrPSc, enabling highly sensitive detection of the protein. We analyzed urine samples from several patients with various transmissible spongiform encephalopathies (variant and sporadic Creutzfeldt–Jakob disease and genetic forms of prion disease), patients with other degenerative or nondegenerative neurologic disorders, and healthy persons.

 
Results

 
PrPSc was detectable only in the urine of patients with variant Creutzfeldt–Jakob disease and had the typical electrophoretic profile associated with this disease. PrPSc was detected in 13 of 14 urine samples obtained from patients with variant Creutzfeldt–Jakob disease and in none of the 224 urine samples obtained from patients with other neurologic diseases and from healthy controls, resulting in an estimated sensitivity of 92.9% (95% confidence interval [CI], 66.1 to 99.8) and a specificity of 100.0% (95% CI, 98.4 to 100.0). The PrPSc concentration in urine calculated by means of quantitative PMCA was estimated at 1×10−16 g per milliliter, or 3×10−21 mol per milliliter, which extrapolates to approximately 40 to 100 oligomeric particles of PrPSc per milliliter of urine.

 
Conclusions

 
Urine samples obtained from patients with variant Creutzfeldt–Jakob disease contained minute quantities of PrPSc. (Funded by the National Institutes of Health and others.)

 
The views expressed in this article are those of the authors and not necessarily those of the U.K. Department of Health.

 
Supported by grants from the National Institutes of Health (P01AI077774, R42NS079060, R01NS049173, and R01NS078745, to Dr. Soto), PrioNet Canada and Merck Serono (to Dr. Soto), the Italian Ministry of Health, Associazione Italiana Encefalopatie da Prioni, and Ministero dell'Università e della Ricerca (RBAP11FRE9, to Dr. Tagliavini), the Charles S. Britton Fund (P01AG14359, to Dr. Gambetti), and the U.K. Department of Health and the Scottish Government (to Drs. Ironside and Knight).

 
Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

 
We thank Suzanne Lowrie, F.I.B.M.S., for assistance in collecting urine samples, Denisse Gonzalez-Romero, M.Sc., of the University of Texas Medical School at Houston for technical assistance, and Dr. Glenn Telling of Colorado State University for providing colonies of transgenic mice expressing human prion protein.

Source Information

From the Mitchell Center for Research in Alzheimer's Disease and Related Brain Disorders, University of Texas Medical School at Houston, Houston (F.M., L.C.-M., K.-W.P., C.S.); Foundation Carlo Besta Neurologic Institute, Milan (F.M., M.C., E.M., S.S., F.T.); National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland (P.G., S.N.); Universidad de los Andes, Facultad de Medicina, Santiago, Chile (L.C.-M.); Assistance Publique–Hôpitaux de Paris, Cellule Nationale de Référence des Maladies de Creutzfeldt–Jakob, Groupe Hospitalier Pitié–Salpêtrière, INSERM Unité 1127, Université Pierre et Marie Curie–Paris 6, and Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche — all in Paris (S.H., J.-P.B.); and the National CJD Research and Surveillance Unit, Western General Hospital, University of Edinburgh, Edinburgh (J.I., R.K.).

 
Address reprint requests to Dr. Soto at the University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX77030, or at claudio.soto@uth.tmc.edu.

 
http://www.nejm.org/doi/full/10.1056/NEJMoa1404401?query=featured_home
 
 
1996 NARANG URINE TEST
 
 
 
 
 
 
5.289 We have concluded, for the reasons given above, that Dr Narang's work received fair consideration by MAFF scientists. While we would pay tribute to Dr Narang's dedication to research into TSEs, we feel that he had a fair opportunity to demonstrate the validity of his work but did not succeed in doing so.
 
 
8. I was in receipt of no extra funds beyond those provided by the NHS and the University of London to run my laboratories and pay my salary as a senior lecturer/honorary Consultant and I suffered no constraints over my publications, lectures to my students, or statements to the media. However, I became increasingly aware after 1988 that questioning official dogma about BSE brought difficulties to one’s career. I was myself about to retire from the Charing Cross Hospital, where I worked as a Consultant Neuropathologist, but I observed with horror that the good reputations of dissenting scientists in the field, not least Dr Stephen Dealler and especially Dr Harash Narang were systematically undermined.
 
 
 snip...see more here ;
 
Thursday, September 30, 2010
 
Characterization of the Prion Protein in Human Urine*
 
 
 Wednesday, July 23, 2014
 
After the storm? UK blood safety and the risk of variant Creutzfeldt-Jakob Disease
 
 
Monday, June 02, 2014
 
Confirmed Human BSE aka mad cow Variant CJD vCJD or nvCJD Case in Texas
 
 
 Sunday, June 29, 2014
 
Transmissible Spongiform Encephalopathy TSE Prion Disease North America 2014
 
 
 
TSS