*** PLEASE TAKE NOTE ***
*** SPORADIC CJD HAS NEVER BEEN PROVEN TO BE A SPONTANEOUS MUTATION OF THE
PROTEIN, SIMPLY CAUSED BY NOTHING IN 85%+ OF ALL CASES OF HUMAN TSE PRION
DISEASE. THIS HAS NEVER BEEN PROVEN, IT’S A MYTH $$$
*** SPORADIC CJD SIMPLY MEANS UNKNOWN. (if someone tells you that all
sporadic cjd is spontaneous, ask them to prove it. they can’t, because it’s
never been proven...TSS)
*** SPORADIC CJD ONE-IN-A-MILLION MYTH, IS MISLEADING AND INCORRECT WHEN
PUT INTO REAL TERMS, PLEASE SEE ;
sporadic cjd one in a million or not ?
lifetime risk of developing sporadic CJD is about 1 in 30,000, jumps to 1
in 9,000 in 50 years of age and above
IN REALITY, sporadic CJD is 1 in 9,000 in 50 years of age and above, and
that's with a inadequate or what I call passive surveillance system. see below ;
Dr. William Shulaw, a veterinarian with The Ohio State University extension
service, is involved in a nationwide program to eradicate scrapie, the form of
BSE found in sheep.
Shulaw said the chances of a person getting sporadic Creutzfeldt- Jakob
disease is about one in a million. But that's the total population, infants,
children, adults and the elderly.
Chances increase to one in 9,000 when the group is restricted to those age
50 and older.
Tuesday, March 11, 2014
Science and Technology Committee Oral evidence: Blood, tissue and organ
screening, HC 990 Wednesday 5 March 2014 SPORADIC CJD
Actually, it is nearer 2 per million per year of the population will
develop sporadic CJD, but your lifetime risk of developing sporadic CJD is about
1 in 30,000. So that has not really changed. When people talk about 1 per
million, often they interpret that as thinking it is incredibly rare. They think
they have a 1-in-a-million chance of developing this disease. You haven’t.
You’ve got about a 1-in-30,000 chance of developing it.
USA 2007-2008 sporadic CJD statistics revised to 1 in 9,000 in ages 55 and
older !
The statistical incidence of CJD cases in the United States has been
revised to reflect that there is one case per 9000 in adults age 55 and older.
Eighty-five percent of the cases are sporadic, meaning there is no known cause
at present.
-------- Original Message --------
Subject: re-BSE prions propagate as either variant CJD-like or sporadic CJD
Date: Thu, 28 Nov 2002 10:23:43 -0000
From: "Asante, Emmanuel A" e.asante@ic.ac.uk
To: "'flounder@wt.net'" flounder@wt.net
Dear Terry,
I have been asked by Professor Collinge to respond to your request. I am a
Senior Scientist in the MRC Prion Unit and the lead author on the paper. I have
attached a pdf copy of the paper for your attention.
Thank you for your interest in the paper.
In respect of your first question, the simple answer is, ***yes. As you
will find in the paper, we have managed to associate the alternate phenotype to
type 2 PrPSc, the commonest sporadic CJD. It is too early to be able to claim
any further sub-classification in respect of Heidenhain variant CJD or Vicky
Rimmer's version. It will take further studies, which are on-going, to establish
if there are sub-types to our initial finding which we are now reporting. The
main point of the paper is that, as well as leading to the expected new variant
CJD phenotype, BSE transmission to the 129-methionine genotype can lead to an
alternate phenotype which is indistinguishable from type 2 PrPSc.
I hope reading the paper will enlighten you more on the subject. If I can
be of any further assistance please to not hesitate to ask. Best wishes.
Emmanuel Asante
<>
____________________________________
Dr. Emmanuel A Asante MRC Prion Unit & Neurogenetics Dept.
Imperial College School of Medicine (St. Mary's) Norfolk Place, LONDON W2 1PG
Tel: +44 (0)20 7594 3794 Fax: +44 (0)20 7706 3272 email: e.asante@ic.ac.uk
(until 9/12/02) New e-mail: e.asante@prion.ucl.ac.uk (active from now)
____________________________________
Thursday, August 12, 2010
Seven main threats for the future linked to prions
First threat
The TSE road map defining the evolution of European policy for protection
against prion diseases is based on a certain numbers of hypotheses some of which
may turn out to be erroneous. In particular, a form of BSE (called atypical
Bovine Spongiform Encephalopathy), recently identified by systematic testing in
aged cattle without clinical signs, may be the origin of classical BSE and thus
potentially constitute a reservoir, which may be impossible to eradicate if a
sporadic origin is confirmed.
***Also, a link is suspected between atypical BSE and some apparently
sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases
constitute an unforeseen first threat that could sharply modify the European
approach to prion diseases.
Second threat
snip...
Monday, October 10, 2011
EFSA Journal 2011 The European Response to BSE: A Success Story
snip...
EFSA and the European Centre for Disease Prevention and Control (ECDC)
recently delivered a scientific opinion on any possible epidemiological or
molecular association between TSEs in animals and humans (EFSA Panel on
Biological Hazards (BIOHAZ) and ECDC, 2011). This opinion confirmed Classical
BSE prions as the only TSE agents demonstrated to be zoonotic so far
*** but the possibility that a small proportion of human cases so far
classified as "sporadic" CJD are of zoonotic origin could not be excluded.
Moreover, transmission experiments to non-human primates suggest that some TSE
agents in addition to Classical BSE prions in cattle (namely L-type Atypical
BSE, Classical BSE in sheep, transmissible mink encephalopathy (TME) and chronic
wasting disease (CWD) agents) might have zoonotic potential.
snip...
To date the OIE/WAHO assumes that the human and animal health standards
set out in the BSE chapter for classical BSE (C-Type) applies to all forms of
BSE which include the H-type and L-type atypical forms. This assumption is
scientifically not completely justified and accumulating evidence suggests that
this may in fact not be the case. Molecular characterization and the spatial
distribution pattern of histopathologic lesions and immunohistochemistry (IHC)
signals are used to identify and characterize atypical BSE. Both the L-type and
H-type atypical cases display significant differences in the conformation and
spatial accumulation of the disease associated prion protein (PrPSc) in brains
of afflicted cattle. Transmission studies in bovine transgenic and wild type
mouse models support that the atypical BSE types might be unique strains because
they have different incubation times and lesion profiles when compared to C-type
BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian
hamster the resulting molecular fingerprint had changed, either in the first or
a subsequent passage, from L-type into C-type BSE.
***In addition, non-human primates are specifically susceptible for
atypical BSE as demonstrated by an approximately 50% shortened incubation time
for L-type BSE as compared to C-type. Considering the current scientific
information available, it cannot be assumed that these different BSE types pose
the same human health risks as C-type BSE or that these risks are mitigated by
the same protective measures.
>>>Indications are that atypical BSE may occur
spontaneously (rather than through consumption of infected feed)
In this context, a word is in order about the US testing program. After
the discovery of the first (imported) cow in 2003, the magnitude of testing was
much increased, reaching a level of >400,000 tests in 2005 (Figure 4).
Neither of the 2 more recently indigenously infected older animals with
nonspecific clinical features would have been detected without such testing, and
neither would have been identified as atypical without confirmatory Western
blots. Despite these facts, surveillance has now been decimated to 40,000 annual
tests (USDA news release no. 0255.06, July 20, 2006)
Release No. 0447.03 Printable VersionPrintable Version Contact: USDA
Office of Communication (202) 720-4623
Technical Briefing and Webcast with U.S. Government Officials on BSE Case
WASHINGTON, December 29, 2003 -
Having said that, we have no evidence to suggest that BSE occurs
spontaneously in cattle. It's one of those situations where it's very, very
difficult to prove a negative. How can you prove that it doesn't occur?
So there is no scientific basis to say that we do have spontaneous cases
of BSE. On the other hand, we don't have sufficient data at this point to
definitively say that it doesn't occur.
This particular situation, now that we know or it would certainly appear
that this is an animal that would have been born before the feed ban, would tend
to not support or lend no support for the theory of spontaneously occurring BSE.
But again, it's proving a negative and we simply don't have enough data to
definitively say that it doesn't happen.
Release No. 0106.04 Contact: Office of Communications (202) 720-4623
Transcript of Remarks From Technical Briefing on BSE and Related Issues
With Agriculture Secretary Ann M. Veneman and USDA Chief Veterinary Officer Dr.
Ron DeHaven Washington D.C. - March 15, 2004
DR. DEHAVEN:
“As far as spontaneous cases, that is a very difficult issue. There is no
evidence to prove that spontaneous BSE occurs in cattle;
However, a BSE expert said that consumption of infected material is the
only known way that cattle get the disease under natural conditons.
***“In view of what we know about BSE after almost 20 years experience,
contaminated feed has been the source of the epidemic,” said Paul Brown, a
scientist retired from the National Institute of Neurological Diseases and
Stroke.
BSE is not caused by a microbe. It is caused by the misfolding of the
so-called “prion protein” that is a normal constituent of brain and other
tissues. If a diseased version of the protein enters the brain somehow, it can
slowly cause all the normal versions to become misfolded. It is possible the
disease could arise spontaneously, though such an event has never been recorded,
Brown said.
Atypical BSE (BASE) Transmitted from Asymptomatic Aging Cattle to a
Primate
Emmanuel E. Comoy1*, Cristina Casalone2, Nathalie Lescoutra-Etchegaray1,
Gianluigi Zanusso3, Sophie Freire1, Dominique Marcé1, Frédéric Auvré1,
Marie-Magdeleine Ruchoux1, Sergio Ferrari3, Salvatore Monaco3, Nicole Salès4,
Maria Caramelli2, Philippe Leboulch1,5, Paul Brown1, Corinne I. Lasmézas4,
Jean-Philippe Deslys1
1 Institute of Emerging Diseases and Innovative Therapies, CEA,
Fontenay-aux-Roses, France, 2 Istituto Zooprofilattico Sperimentale del
Piemonte, Turin, Italy, 3 Policlinico G.B. Rossi, Verona, Italy, 4 Scripps
Florida, Jupiter, Florida, United States of America, 5 Genetics Division,
Brigham & Women's Hospital, Harvard Medical School, Boston,
Massachusetts, United States of America
Abstract Top Background
Human variant Creutzfeldt-Jakob Disease (vCJD) results from foodborne
transmission of prions from slaughtered cattle with classical Bovine Spongiform
Encephalopathy (cBSE). Atypical forms of BSE, which remain mostly asymptomatic
in aging cattle, were recently identified at slaughterhouses throughout Europe
and North America, raising a question about human susceptibility to these new
prion strains.
Methodology/Principal Findings
Brain homogenates from cattle with classical BSE and atypical (BASE)
infections were inoculated intracerebrally into cynomolgus monkeys (Macacca
fascicularis), a non-human primate model previously demonstrated to be
susceptible to the original strain of cBSE. The resulting diseases were compared
in terms of clinical signs, histology and biochemistry of the abnormal prion
protein (PrPres). The single monkey infected with BASE had a shorter survival,
and a different clinical evolution, histopathology, and prion protein (PrPres)
pattern than was observed for either classical BSE or vCJD-inoculated animals.
Also, the biochemical signature of PrPres in the BASE-inoculated animal was
found to have a higher proteinase K sensitivity of the octa-repeat region. We
found the same biochemical signature in three of four human patients with
sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the
infected bovine.
Conclusion/Significance
Our results point to a possibly higher degree of pathogenicity of BASE
than classical BSE in primates and also raise a question about a possible link
to one uncommon subset of cases of apparently sporadic CJD. Thus, despite the
waning epidemic of classical BSE, the occurrence of atypical strains should
temper the urge to relax measures currently in place to protect public health
from accidental contamination by BSE-contaminated products.
Citation: Comoy EE, Casalone C, Lescoutra-Etchegaray N, Zanusso G, Freire
S, et al. (2008) Atypical BSE (BASE) Transmitted from Asymptomatic Aging Cattle
to a Primate. PLoS ONE 3(8): e3017. doi:10.1371/journal.pone.0003017
Editor: Neil Mabbott, University of Edinburgh, United Kingdom
Received: April 24, 2008; Accepted: August 1, 2008; Published: August 20,
2008
Copyright: © 2008 Comoy et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.
Funding: This work has been supported by the Network of Excellence
NeuroPrion.
Competing interests: CEA owns a patent covering the BSE diagnostic tests
commercialized by the company Bio-Rad.
* E-mail: emmanuel.comoy@cea.fr
snip...
In summary, we have transmitted one atypical form of BSE (BASE) to a
cynomolgus macaque monkey that had a shorter incubation period than monkeys
infected with classical BSE, with distinctive clinical, neuropathological, and
biochemical features; and have shown that the molecular biological signature
resembled that seen in a comparatively uncommon subtype of sporadic CJD. We
cannot yet say whether BASE is more pathogenic for primates (including humans)
than cBSE, nor can we predict whether its molecular biological features
represent a clue to one cause of apparently sporadic human CJD. However, the
evidence presented here and by others justifies concern about a potential human
health hazard from undetected atypical forms of BSE, and despite the waning
epizoonosis of classical BSE, it would be premature to abandon the precautionary
measures that have been so successful in reversing the impact of cBSE. We would
instead urge a gradual, staged reduction that takes into account the evolving
knowledge about atypical ruminant diseases, and both a permanent ban on the use
of bovine central nervous system tissue for either animal or human use, and its
destruction so as to eliminate any risk of environmental contamination.
Wednesday, March 31, 2010
Atypical BSE in Cattle
To date the OIE/WAHO assumes that the human and animal health standards
set out in the BSE chapter for classical BSE (C-Type) applies to all forms of
BSE which include the H-type and L-type atypical forms. This assumption is
scientifically not completely justified and accumulating evidence suggests that
this may in fact not be the case. Molecular characterization and the spatial
distribution pattern of histopathologic lesions and immunohistochemistry (IHC)
signals are used to identify and characterize atypical BSE. Both the L-type and
H-type atypical cases display significant differences in the conformation and
spatial accumulation of the disease associated prion protein (PrPSc) in brains
of afflicted cattle. Transmission studies in bovine transgenic and wild type
mouse models support that the atypical BSE types might be unique strains because
they have different incubation times and lesion profiles when compared to C-type
BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian
hamster the resulting molecular fingerprint had changed, either in the first or
a subsequent passage, from L-type into C-type BSE. In addition, non-human
primates are specifically susceptible for atypical BSE as demonstrated by an
approximately 50% shortened incubation time for L-type BSE as compared to
C-type. Considering the current scientific information available, it cannot be
assumed that these different BSE types pose the same human health risks as
C-type BSE or that these risks are mitigated by the same protective measures.
This study will contribute to a correct definition of specified risk
material (SRM) in atypical BSE. The incumbent of this position will develop new
and transfer existing, ultra-sensitive methods for the detection of atypical BSE
in tissue of experimentally infected cattle.
The present study demonstrated successful intraspecies transmission of
H-type BSE to cattle and the distribution and immunolabeling patterns of PrPSc
in the brain of the H-type BSE-challenged cattle. TSE agent virulence can be
minimally defined by oral transmission of different TSE agents (C-type, L-type,
and H-type BSE agents) [59]. Oral transmission studies with H-type BSE infected
cattle have been initiated and are underway to provide information regarding the
extent of similarity in the immunohistochemical and molecular features before
and after transmission. In addition, the present data will support risk
assessments in some peripheral tissues derived from cattle affected with H-type
BSE.
*** This supports the theory that the importation of BSE contaminated
feedstuff is the source of C-type BSE in Canada.
*** It also suggests a similar cause or source for atypical BSE in these
countries.
*** P.9.21 Molecular characterization of BSE in Canada
Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim
McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre,
Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of
Calgary, Canada
Background: Three BSE types (classical and two atypical) have been
identified on the basis of molecular characteristics of the misfolded protein
associated with the disease. To date, each of these three types have been
detected in Canadian cattle.
Objectives: This study was conducted to further characterize the 16
Canadian BSE cases based on the biochemical properties of there associated
PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and
relative proteinase K sensitivity of the PrPres from each of the 16 confirmed
Canadian BSE cases was determined using modified Western blot analysis.
Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type
and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and
changes in glycosylation similar to other atypical BSE cases. PK digestion under
mild and stringent conditions revealed a reduced protease resistance of the
atypical cases compared to the C-type cases. N terminal- specific antibodies
bound to PrPres from H type but not from C or L type. The C-terminal-specific
antibodies resulted in a shift in the glycoform profile and detected a fourth
band in the Canadian H-type BSE.
Discussion: The C, L and H type BSE cases in Canada exhibit molecular
characteristics similar to those described for classical and atypical BSE cases
from Europe and Japan.
*** This supports the theory that the importation of BSE contaminated
feedstuff is the source of C-type BSE in Canada.
Discussion: The C, L and H type BSE cases in Canada exhibit molecular
characteristics similar to those described for classical and atypical BSE cases
from Europe and Japan. *** This supports the theory that the importation of BSE
contaminated feedstuff is the source of C-type BSE in Canada.
*** It also suggests a similar cause or source for atypical BSE in these
countries. ***
see page 176 of 201 pages...tss
Sunday, December 15, 2013
*** FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED
VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013 UPDATE
*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics
of BSE in Canada Singeltary reply ;
LAST MAD COW IN USA, IN CALIFORNIA, WAS ATYPICAL L-TYPE BASE BSE TSE PRION
DISEASE
Thursday, February 20, 2014
Unnecessary precautions BSE MAD COW DISEASE Dr. William James FSIS VS Dr.
Linda Detwiler 2014
FOR IMMEDIATE RELEASE P01-05 January 30, 2001 Print Media: 301-827-6242 Consumer Inquiries: 888-INFO-FDA
--------------------------------------------------------------------------------
FDA ANNOUNCES TEST RESULTS FROM TEXAS FEED LOT
Today the Food and Drug Administration announced the results of tests taken on feed used at a Texas feedlot that was suspected of containing meat and bone meal from other domestic cattle -- a violation of FDA's 1997 prohibition on using ruminant material in feed for other ruminants. Results indicate that a very low level of prohibited material was found in the feed fed to cattle.
FDA has determined that each animal could have consumed, at most and in total, five-and-one-half grams - approximately a quarter ounce -- of prohibited material. These animals weigh approximately 600 pounds.
It is important to note that the prohibited material was domestic in origin (therefore not likely to contain infected material because there is no evidence of BSE in U.S. cattle), fed at a very low level, and fed only once. The potential risk of BSE to such cattle is therefore exceedingly low, even if the feed were contaminated.
According to Dr. Bernard Schwetz, FDA's Acting Principal Deputy Commissioner, "The challenge to regulators and industry is to keep this disease out of the United States. One important defense is to prohibit the use of any ruminant animal materials in feed for other ruminant animals. Combined with other steps, like U.S. Department of Agriculture's (USDA) ban on the importation of live ruminant animals from affected countries, these steps represent a series of protections, to keep American cattle free of BSE."
Despite this negligible risk, Purina Mills, Inc., is nonetheless announcing that it is voluntarily purchasing all 1,222 of the animals held in Texas and mistakenly fed the animal feed containing the prohibited material. Therefore, meat from those animals will not enter the human food supply. FDA believes any cattle that did not consume feed containing the prohibited material are unaffected by this incident, and should be handled in the beef supply clearance process as usual.
FDA believes that Purina Mills has behaved responsibly by first reporting the human error that resulted in the misformulation of the animal feed supplement and then by working closely with State and Federal authorities.
This episode indicates that the multi-layered safeguard system put into place is essential for protecting the food supply and that continued vigilance needs to be taken, by all concerned, to ensure these rules are followed routinely.
FDA will continue working with USDA as well as State and local officials to ensure that companies and individuals comply with all laws and regulations designed to protect the U.S. food supply.
http://www.fda.gov/bbs/topics/NEWS/2001/NEW00752.html
NEWS RELEASE
Texas Animal Health Commission Box l2966 •Austin, Texas 78711 •(800) 550-8242• FAX (512) 719-0719 Linda Logan, DVM, PhD• Executive Director For info, contact Carla Everett, information officer, at 1-800-550-8242, ext. 710, or
ceverett@tahc.state.tx.us
For Immediate Release-- Feed Contamination Issue Resolved by FDA
Although many of you may have heard the latest regarding the resolution of the cattle feed contamination situation in Texas, I wanted to ensure that you received this statement issued by the Food and Drug Administration (FDA), the agency in charge of regulating feed components. The FDA has said the cattle involved are to be rendered and the material will not enter ruminant or human food channels. The Texas Animal Health Commission (TAHC) will provided assistance to the FDA as requested and needed. FDA ANNOUNCES TEST RESULTS FROM TEXAS FEED LOT Today (Tuesday, Jan. the Food and Drug Administration announced the results of tests taken on feed used at a Texas feedlot that was suspected of containing meat and bone meal from other domestic cattle -- a violation of FDA's 1997 prohibition on using ruminant material in feed for other ruminants. Results indicate that a very low level of prohibited material was found in the feed fed to cattle. FDA has determined that each animal could have consumed, at most and in total, five-and-one-half grams - approximately a quarter ounce -- of prohibited material. These animals weigh approximately 600 pounds. It is important to note that the prohibited material was domestic in origin (therefore not likely to contain infected material because there is no evidence of BSE in U.S. cattle), fed at a very low level, and fed only once. The potential risk of BSE to such cattle is therefore exceedingly low, even if the feed were contaminated. According to Dr. Bernard Schwetz, FDA's Acting Principal Deputy Commissioner, "The challenge to regulators and industry is to keep this disease out of the United States. One important defense is to prohibit the use of any ruminant animal materials in feed for other ruminant animals. Combined with other steps, like U.S. Department of Agriculture's (USDA) ban on the importation of live ruminant animals from affected countries, these steps represent a series of protections, to keep American cattle free of BSE." Despite this negligible risk, Purina Mills, Inc., is nonetheless announcing that it is voluntarily purchasing all 1,222 of the animals held in Texas and mistakenly fed the animal feed containing the prohibited material. Therefore, meat from those animals will not enter the human food supply. FDA believes any cattle that did not consume feed containing the prohibited material are unaffected by this incident, and should be handled in the beef supply clearance process as usual. FDA believes that Purina Mills has behaved responsibly by first reporting the human error that resulted in the misformulation of the animal feed supplement and then by working closely with State and Federal authorities. This episode indicates that the multi-layered safeguard system put into place is essential for protecting the food supply and that continued vigilance needs to be taken, by all concerned, to ensure these rules are followed routinely. FDA will continue working with USDA as well as state and local officials to ensure that companies and individuals comply with all laws and regulations designed to protect the U.S. food supply.
---30--
http://www.tahc.state.tx.us/News/pr/2001/101FEED_ISSUE_RESOLVED.pdf
http://www.fda.gov/ora/about/enf_story/archive/2001/ch5/default.htm
> For Immediate Release-- Feed Contamination Issue Resolved by FDA
HA, HA, HA, !!!
HMMM, TEXAS, 5.5 GRAMS TO A 600 POUND COW, no problem ??? really ??? let's see ;
It is clear that the designing scientists must also have shared Mr Bradleys surprise at the results because all the dose levels right down to 1 gram triggered infection.
http://web.archive.org/web/20040523230128/www.bseinquiry.gov.uk/files/ws/s145d.pdf
it is clear that the designing scientists must have also shared Mr Bradleys surprise at the results because all the dose levels right down to 1 gram triggered infection.
http://web.archive.org/web/20030526212610/http://www.bseinquiry.gov.uk/files/ws/s147f.pdf
Experimental BSE Infection of Non-human Primates: Efficacy of the Oral Route
Holznagel, E1; Yutzy, B1; Deslys, J-P2; Lasmézas, C2; Pocchiari, M3; Ingrosso, L3; Bierke, P4; Schulz-Schaeffer, W5; Motzkus, D6; Hunsmann, G6; Löwer, J1 1Paul-Ehrlich-Institut, Germany; 2Commissariat à l´Energie Atomique, France; 3Instituto Superiore di Sanità, Italy; 4Swedish Institute for Infectious Disease control, Sweden; 5Georg August University, Germany; 6German Primate Center, Germany
Background: In 2001, a study was initiated in primates to assess the risk for humans to contract BSE through contaminated food. For this purpose, BSE brain was titrated in cynomolgus monkeys.
Aims: The primary objective is the determination of the minimal infectious dose (MID50) for oral exposure to BSE in a simian model, and, by in doing this, to assess the risk for humans. Secondly, we aimed at examining the course of the disease to identify possible biomarkers.
Methods: Groups with six monkeys each were orally dosed with lowering amounts of BSE brain: 16g, 5g, 0.5g, 0.05g, and 0.005g. In a second titration study, animals were intracerebrally (i.c.) dosed (50, 5, 0.5, 0.05, and 0.005 mg).
Results: In an ongoing study, a considerable number of high-dosed macaques already developed simian vCJD upon oral or intracerebral exposure or are at the onset of the clinical phase. However, there are differences in the clinical course between orally and intracerebrally infected animals that may influence the detection of biomarkers.
Conclusions: Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate. The difference in the incubation period between 5 g oral and 5 mg i.c. is only 1 year (5 years versus 4 years). However, there are rapid progressors among orally dosed monkeys that develop simian vCJD as fast as intracerebrally inoculated animals. The work referenced was performed in partial fulfilment of the study “BSE in primates“ supported by the EU (QLK1-2002-01096).
http://www.neuroprion.org/resources/pdf_docs/conferences/prion2007/abstract_book.pdf
Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate.
http://www.prion2007.com/pdf/Prion%20Book%20of%20Abstracts.pdf
WE know now, and we knew decades ago, that 5.5 grams of suspect feed in TEXAS was enough to kill many many cows.
look at the table and you'll see that as little as 1 mg (or 0.001 gm) caused 7% (1 of 14) of the cows to come down with BSE;
Risk of oral infection with bovine spongiform encephalopathy agent in primates
Corinne Ida Lasmézas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Frédéric Auvré, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Nicole Salès, Gerald Wells, Paul Brown, Jean-Philippe Deslys
Summary The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)--which can lead to variant Creutzfeldt-Jakob disease (vCJD)--is compounded by incomplete knowledge about the efficiency of oral infection and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the other remained free of disease at 76 months. On the basis of these findings and data from other studies, we made a preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public health measures can prevent transmission of BSE to man.
snip...
BSE bovine brain inoculum 100 g 10 g 5 g 1 g 100 mg 10 mg 1 mg 0·1 mg 0·01 mg Primate (oral route)* 1/2 (50%) Cattle (oral route)* 10/10 (100%) 7/9 (78%) 7/10 (70%) 3/15 (20%) 1/15 (7%) 1/15 (7%) RIII mice (ic ip route)* 17/18 (94%) 15/17 (88%) 1/14 (7%)
PrPres biochemical detection The comparison is made on the basis of calibration of the bovine inoculum used in our study with primates against a bovine brain inoculum with a similar PrPres concentration that was inoculated into mice and cattle.8
*Data are number of animals positive/number of animals surviving at the time of clinical onset of disease in the first positive animal (%). The accuracy of bioassays is generally judged to be about plus or minus 1 log. ic ip=intracerebral and intraperitoneal.
Table 1: Comparison of transmission rates in primates and cattle infected orally with similar BSE brain inocula Published online January 27, 2005
http://www.thelancet.com/journal/journal.isa
snip...
http://transmissiblespongiformencephalopathy.blogspot.com/2011/09/bse-prion-agriculture-animal-feed.html
*** BANNED MAD COW FEED IN THE USA IN COMMERCE TONS AND TONS
THIS is just ONE month report, of TWO recalls of prohibited banned MBM,
which is illegal, mixed with 85% blood meal, which is still legal, but yet we
know the TSE/BSE agent will transmit blood. we have this l-BSE in North America
that is much more virulent and there is much concern with blood issue and l-BSE
as there is with nvCJD in humans. some are even starting to be concerned with
sporadic CJD and blood, and there are studies showing transmission there as
well. ... this is one month recall page, where 10 MILLION POUNDS OF BANNED MAD
COW FEED WENT OUT INTO COMMERCE, TO BE FED OUT. very little of the product that
reaches commerce is ever returned via recall, very, very little. this was 2007,
TEN YEARS AFTER THE AUGUST 4, 1997, PARTIAL AND VOLUNTARY MAD COW FEED BAN IN
THE USA, that was nothing but ink on paper. i have listed the tonnage of mad cow
feed that was in ALABAMA in one of the links too, this is where the infamous
g-h-BSEalabama case was, a genetic relation matching the new sporadic CJD in the
USA. seems this saga just keeps getting better and better.......$$$
10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN
COMMERCE USA 2007
Date: March 21, 2007 at 2:27 pm PST
RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II
___________________________________
PRODUCT
Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried,
Recall # V-024-2007
CODE
Cattle feed delivered between 01/12/2007 and 01/26/2007
RECALLING FIRM/MANUFACTURER
Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.
Firm initiated recall is ongoing.
REASON
Blood meal used to make cattle feed was recalled because it was cross-
contaminated with prohibited bovine meat and bone meal that had been
manufactured on common equipment and labeling did not bear cautionary BSE
statement.
VOLUME OF PRODUCT IN COMMERCE
42,090 lbs.
DISTRIBUTION
WI
___________________________________
PRODUCT
Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot-
Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M
CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B
DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal,
JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT
Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral,
BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC
LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall #
V-025-2007
CODE
The firm does not utilize a code - only shipping documentation with
commodity and weights identified.
RECALLING FIRM/MANUFACTURER
Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm
initiated recall is complete.
REASON
Products manufactured from bulk feed containing blood meal that was cross
contaminated with prohibited meat and bone meal and the labeling did not bear
cautionary BSE statement.
VOLUME OF PRODUCT IN COMMERCE
9,997,976 lbs.
DISTRIBUTION
ID and NV
END OF ENFORCEMENT REPORT FOR MARCH 21, 2007
Saturday, August 14, 2010
BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and
VPSPr PRIONPATHY
*** (see mad cow feed in COMMERCE IN ALABAMA...TSS)
BANNED MAD COW FEED IN COMMERCE IN ALABAMA
Date: September 6, 2006 at 7:58 am PST PRODUCT
a) EVSRC Custom dairy feed, Recall # V-130-6;
b) Performance Chick Starter, Recall # V-131-6;
c) Performance Quail Grower, Recall # V-132-6;
d) Performance Pheasant Finisher, Recall # V-133-6.
CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R
Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter
dated July 19, 2006. Firm initiated recall is complete.
REASON
Dairy and poultry feeds were possibly contaminated with ruminant based
protein.
VOLUME OF PRODUCT IN COMMERCE 477.72 tons
DISTRIBUTION AL
______________________________
PRODUCT Bulk custom dairy pre-mixes,
Recall # V-120-6 CODE None RECALLING FIRM/MANUFACTURER Ware Milling Inc.,
Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete.
REASON Possible contamination of dairy animal feeds with ruminant derived meat
and bone meal.
VOLUME OF PRODUCT IN COMMERCE 350 tons
DISTRIBUTION AL and MS
______________________________
PRODUCT
a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb.
bags, Recall # V-121-6;
b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags,
Recall # V-122-6;
c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall #
V-123-6;
d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50
lb bags, Recall # V-124-6;
e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall #
V-125-6;
f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall #
V-126-6;
g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall #
V-127-6
CODE All products manufactured from 02/01/2005 until 06/20/2006 RECALLING
FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by
telephone and visit on June 20, 2006, and by letter on June 23, 2006.
Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall
is ongoing.
REASON Poultry and fish feeds which were possibly contaminated with
ruminant based protein were not labeled as "Do not feed to ruminants".
VOLUME OF PRODUCT IN COMMERCE 7,541-50 lb bags
DISTRIBUTION AL, GA, MS, and TN
END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006
###
Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125
TONS Products manufactured from 02/01/2005 until 06/06/2006
Date: August 6, 2006 at 6:16 pm PST PRODUCT
a) CO-OP 32% Sinking Catfish, Recall # V-100-6;
b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall #
V-101-6;
c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;
d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;
e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;
f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50
lb. bag, Recall # V-105-6;
g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%,
Recall # V-106-6;
h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to
20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall #
V-107-6;
i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;
j) CO-OP LAYING CRUMBLES, Recall # V-109-6;
k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall #
V-110-6;
l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;
m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE
Product manufactured from 02/01/2005 until 06/06/2006
RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL,
by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is
complete.
REASON Animal and fish feeds which were possibly contaminated with ruminant
based protein not labeled as "Do not feed to ruminants".
VOLUME OF PRODUCT IN COMMERCE 125 tons
DISTRIBUTION AL and FL
END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006
###
MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006
09:22 71.248.128.67
RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II
______________________________
PRODUCT
a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals,
Recall # V-079-6;
b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg),
Recall # V-080-6;
c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED,
Recall # V-081-6;
d) Feather Meal, Recall # V-082-6 CODE
a) Bulk
b) None
c) Bulk
d) Bulk
RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL,
by telephone on June 15, 2006 and by press release on June 16, 2006. Firm
initiated recall is ongoing.
REASON
Possible contamination of animal feeds with ruminent derived meat and bone
meal.
VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons
DISTRIBUTION Nationwide
END OF ENFORCEMENT REPORT FOR July 12, 2006
###
please see full text ;
THIS IS WHEN THE MAD COW FEED BAN WARNING LETTERS WERE WEEKLY, AND
INFORMATIVE FOR THE PUBLIC ;
DEPARTMENT OF HEALTH & HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND
DRUG ADMINISTRATION
April 9, 2001 WARNING LETTER
01-PHI-12 CERTIFIED MAIL RETURN RECEIPT REQUESTED
Brian J. Raymond, Owner Sandy Lake Mills 26 Mill Street P.O. Box 117 Sandy
Lake, PA 16145 PHILADELPHIA DISTRICT
Tel: 215-597-4390
Dear Mr. Raymond:
Food and Drug Administration Investigator Gregory E. Beichner conducted an
inspection of your animal feed manufacturing operation, located in Sandy Lake,
Pennsylvania, on March 23, 2001, and determined that your firm manufactures
animal feeds including feeds containing prohibited materials. The inspection
found significant deviations from the requirements set forth in Title 21, code
of Federal Regulations, part 589.2000 - Animal Proteins Prohibited in Ruminant
Feed. The regulation is intended to prevent the establishment and amplification
of Bovine Spongiform Encephalopathy (BSE) . Such deviations cause products being
manufactured at this facility to be misbranded within the meaning of Section
403(f), of the Federal Food, Drug, and Cosmetic Act (the Act).
Our investigation found failure to label your swine feed with the required
cautionary statement "Do Not Feed to cattle or other Ruminants" The FDA suggests
that the statement be distinguished by different type-size or color or other
means of highlighting the statement so that it is easily noticed by a
purchaser.
In addition, we note that you are using approximately 140 pounds of cracked
corn to flush your mixer used in the manufacture of animal feeds containing
prohibited material. This flushed material is fed to wild game including deer, a
ruminant animal. Feed material which may potentially contain prohibited material
should not be fed to ruminant animals which may become part of the food
chain.
The above is not intended to be an all-inclusive list of deviations from
the regulations. As a manufacturer of materials intended for animal feed use,
you are responsible for assuring that your overall operation and the products
you manufacture and distribute are in compliance with the law. We have enclosed
a copy of FDA's Small Entity Compliance Guide to assist you with complying with
the regulation... blah, blah, blah...
*** Sunday, December 15, 2013
*** FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OIA UPDATE DECEMBER 2013
UPDATE
http://madcowusda.blogspot.com/2013/12/fda-part-589-substances-prohibited-from.html
*** Singeltary reply ;
Molecular, Biochemical and Genetic Characteristics of BSE in Canada ;
http://www.plosone.org/annotation/listThread.action;jsessionid=635CE9094E0EA15D5362B7D7B809448C?root=7143
TSS