My Photo
Location: BACLIFF, Texas, United States

My mother was murdered by what I call corporate and political homicide i.e. FOR PROFIT! she died from a rare phenotype of CJD i.e. the Heidenhain Variant of Creutzfeldt Jakob Disease i.e. sporadic, simply meaning from unknown route and source. I have simply been trying to validate her death DOD 12/14/97 with the truth. There is a route, and there is a source. There are many here in the USA. WE must make CJD and all human TSE, of all age groups 'reportable' Nationally and Internationally, with a written CJD questionnaire asking real questions pertaining to route and source of this agent. Friendly fire has the potential to play a huge role in the continued transmission of this agent via the medical, dental, and surgical arena. We must not flounder any longer. ...TSS

Thursday, January 19, 2017

Variant Creutzfeldt–Jakob Disease in a Patient with Heterozygosity at PRNP Codon 129

Variant Creutzfeldt–Jakob Disease in a Patient with Heterozygosity at PRNP Codon 129 

N Engl J Med 2017; 376:292-294January 19, 2017DOI: 10.1056/NEJMc1610003

Share: ArticleMetrics To the Editor:

Prions cause lethal neurodegenerative diseases in mammals and are composed of multichain assemblies of misfolded host-encoded cellular prion protein (PrP). A common polymorphism at codon 129 of the PrP gene (PRNP), where either methionine (M) or valine (V) is encoded, affects the susceptibility to prion disease, as well as the incubation period1 and clinical phenotype of prion disease. Human infection with the epizootic prion disease bovine spongiform encephalopathy resulted in variant Creutzfeldt–Jakob disease, which provoked a public health crisis in the United Kingdom and other regions. All definite cases of variant Creutzfeldt–Jakob disease to date have occurred in patients with the MM genotype at PRNP codon 129.1 

A 36-year-old man was referred to the United Kingdom National Prion Clinic in August 2015 with personality change. Over a period of 9 months, he had become uncharacteristically irascible and had progressive episodic memory impairment, gait ataxia, and myoclonus. His score on the Mini–Mental State Examination was 25 (with scores ranging from 0 to 30 and higher scores indicating less impairment); clinical examination revealed extraocular eye-movement abnormalities, pyramidal and cerebellar signs, and multifocal myoclonus. Magnetic resonance imaging of the brain (Figure 1FIGURE 1 MRI of the Brain.) revealed restricted diffusion in the basal ganglia, hypothalami, insular cortexes, and medial thalami but not in the pulvinar nuclei.2 Examination of the cerebrospinal fluid for protein 14-3-3 was negative, as was a real-time quaking-induced conversion assay, although these two tests are known to have low sensitivity for variant Creutzfeldt–Jakob disease.3 His genotype at PRNP codon 129 was MV. During the following 6 months, the patient’s condition declined progressively, and severe dysphagia and agitation occurred shortly before his death in February 2016. 

At autopsy, histologic examination of the brain revealed frequent florid and cluster plaques in cerebral and cerebellar cortexes, microvacuolar degeneration in neuropil, and immunostaining for abnormal PrP in a stellate pericellular and perivascular distribution. Minute amounts of protease-resistant PrP (PrPSc) were seen in lymphoid tissue of the spleen. Immunoblotting of brain homogenate revealed type 4 PrPSc (according to the London classification system), which is pathognomonic of variant Creutzfeldt–Jakob disease.4 (For more details, see the Supplementary Appendix, available with the full text of this letter at 

This patient’s clinical features differed from those of typical variant Creutzfeldt–Jakob disease, and his neuroimaging features suggested a diagnosis of sporadic Creutzfeldt–Jakob disease. He did not meet the epidemiologic diagnostic criteria for probable or possible variant Creutzfeldt–Jakob disease,5 yet the results of the neuropathological examination and molecular strain typing were consistent with variant Creutzfeldt–Jakob disease. It remains uncertain whether this case marks the start of a second wave of variant Creutzfeldt–Jakob disease in persons with the MV genotype at PRNP codon 129 (the most common genotype in the United Kingdom), mirroring the long incubation periods seen in persons with the MV genotype who have other acquired prion diseases, notably kuru.1 This case emphasizes the importance of performing an autopsy and molecular strain typing in cases of prion disease to ascertain the prevalence of human prion disease related to bovine spongiform encephalopathy. 

snip...see full text ;

>>> This patient’s clinical features differed from those of typical variant Creutzfeldt–Jakob disease, and his neuroimaging features suggested a diagnosis of sporadic Creutzfeldt–Jakob disease. He did not meet the epidemiologic diagnostic criteria for probable or possible variant Creutzfeldt–Jakob disease,5 yet the results of the neuropathological examination and molecular strain typing were consistent with variant Creutzfeldt–Jakob disease. <<< 

PRICE OF PRION POKER GOES UP, THE UKBSEnvCJD only theory...imo...terry 


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.*** 

Primate Biol., 3, 47–50, 2016 doi:10.5194/pb-3-47-2016 © Author(s) 2016. CC
Attribution 3.0 License.


Walter Bodemer German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany Correspondence to: Walter Bodemer (

Received: 15 June 2016 – Revised: 24 August 2016 – Accepted: 30 August 2016 – Published: 7 September 2016

Prions gained widespread public and scientific interest in the year 2000. At that time, the human neurological Creutzfeldt–Jakob disease (CJD) was known. However, new CJD cases were diagnosed but they could not be ascribed to one of the classical CJD categories i.e. sporadic (sCJD), hereditary or acquired. Hence, they were classified as variant CJD (vCJD). Later on, experimental evidence suggested that vCJD was caused by prions postulated as unique novel infectious agents and, for example, responsible for bovine spongiform encephalopathy (BSE) also known as mad cow disease. The infection of humans by transmission of BSE prions also defined vCJD as a zoonotic disease. Prions, especially those associated with scrapie in sheep had been known for quite some time and misleadingly discussed as a slow virus. Therefore, this enigmatic pathogen and the transmission of this unusual infectious agent was a matter of a controversial scientific debate. An agent without nucleic acid did not follow the current dogma postulating DNA or RNA as inheritable information encoding molecules. Although numerous experimental results clearly demonstrated the infectious capacity of prions in several animal species, a model close to human was not readily available. Therefore, the use of rhesus monkeys (Macaca mulatta) served as a non-human primate model to elucidate prion infection under controlled experimental conditions. Not the least, transmission of BSE, human vCJD, and sCJD prions could be confirmed in our study. Any prion infection concomitant with progression of disease in humans, especially vCJD, could be analyzed only retrospectively and at late stages of disease. In contrast, the prion-infected rhesus monkeys were accessible before and after infection; the progression from early stage to late clinical stages – and eventually death of the animal–could be traced. Because of the phylogenetic proximity to humans, the rhesus monkey was superior to any rodent or other animal model. For these reasons an experimental approach had been conceived by J. Collinge in London and A. Aguzzi in Zurich and performed in a cooperative study with both research groups in the pathology unit of the German Primate Center (DPZ). The study in the DPZ lasted from 2001 until 2012. Our research in the pathology unit provided a temporal monitoring of how an initial prion infection develops eventually into disease; an approach that would have never been possible in humans since the time point of infection with prions from, for example, BSE is always unknown. Telemetry revealed a shift in sleep– wake cycles early on, long before behavioral changes or clinical symptoms appeared. Pathology confirmed nonneuronal tissue as hidden places where prions exist. The rhesus model also allowed first comparative studies of epigenetic modifications on RNA in peripheral blood and brain tissue collected from uninfected and prion infected animals. To conclude, our studies clearly demonstrated that this model is valid since progression to disease is almost identical to human CJD.

Published by Copernicus Publications on behalf of the Deutsches Primatenzentrum GmbH (DPZ).
2 Methods and results

2.1 Animals The reason to perform prion research in rhesus monkeys was to monitor infection and the temporal progression of prion infection in the rhesus monkey. In contrast to studies of human CJD cases, we could decide on the infectious dose. We also could control behavior immediately after prion inoculation and during the rather long time until animals died from the prion infection. Hidden places where prions might exist were found. Even epigenetic modifications on RNA could be detected. Taken together, these experimental approaches depended on animals. Using rhesus monkeys as a model system required thorough ethic reasoning and consultation with authorities before we actually turned to conduct the experiments. The Number of animals was limited just to fulfill statistical conditions. The individual health status was obtained and health care was provided throughout the study. The animals underwent daily inspection to monitor any changes in health and behavior. The experiments were conceived with the aim of reducing pain, suffering, and harm. Groups of animals were preferred in order to keep them in a social environment. The animals were originally kept in Vienna at Baxter and transferred to the German Primate Center (DPZ) in 2001. J. Collinge, A. Aguzzi, and C. Weissmann were the scientists who recommended this well-controlled prion infection study, and financial support was provided by an EU grant.To ensure statistical significance four groups consisting of four rhesus macaques each were formed: one uninfected control group, one group infected with BSE prions, one with vCJD prions, and one with sCJD prions. Health of animals, infection, and progression to disease was looked at in our pathology department and in cooperation with W. Schulz-Schaeffer at the UMG (University Medicine, Göttingen). Besides, neurologists from the UMG also observed the animals whenever clinical symptoms seemed to appear. This close observation and comparison with human CJD cases demonstrated how close clinical progression of human disease resembles the experimental infection in the non-human primate.

2.2 Infection Infectious prions from brain tissue of one sCJD and one vCJD case (provided by J. Collinge) as well as BSE prions (from a “German” madcow case and provided by W. Schulz Schaeffer) were intraperitoneally administered into the rhesus monkeys.

2.3 Monitoring of behavior and telemetry Early behavioral monitoring was carried out by the ethologists I. Machatschke and J. Dittami from Vienna University. Transmitters were used to record changes in the circadian rhythms. Body temperature, sleep–wake cycles, and activity profiles could be obtained over a time span of 2 years. Up to half a year after infection animals did not show any signs of prion infection. However, after 6 months and persisting for another few months some animals had some disturbances in circadian rhythms which disappeared and then never appeared again(I. Machatschke, personal communication,2006).For a rather long time of about 4–5 years animals seemed to be healthy. But then, almost all animals rapidly progressed to symptoms. Symptoms were highly similar or even identical to those seen in human CJD.

2.4 Pathology Blood and necropsy specimens from the animals served as a valuable source to detect pathologically associated prion protein even in non-neuronal skeletal and cardiac tissue. These “hidden places” of prion pathology and replication were clearly demonstrated and extended our view where prions might spread within an organism. Not only leukocytes and neuronal tissue harbor abnormal prion protein isoforms but also other tissues can propagate prion protein isoforms leading to toxicity, cell degeneration, and eventually transmissible prions (Krasemann et al., 2010, 2013).
3 Conclusion

Most importantly, early signs of an altered circadian rhythm, sleep–wake cycle, and activity and body temperature were recorded in prion-infected animals. This experimental approach would have never been feasible in studies with human CJD cases. After 4–6 years animals developed clinical symptoms highly similar to those typical for CJD. Clinicians confirmed how close the animal model and the human disease matched. Non-neuronal tissue like cardiac muscle and peripheral blood with abnormal, disease-related prion protein were detected in rhesus monkey tissues. 
Molecular changes in RNA from repetitive Alu and BC200 DNA elements were identified and found to be targets of epigenetic editing mechanisms active in prion disease. To conclude, our results with the rhesus monkey model for prion disease proved to be a valid model and increased our knowledge of pathogenic processes that are distinctive to prion disease.
*** WDA 2016 NEW YORK *** 
 We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. 
 Student Presentations Session 2 
 The species barriers and public health threat of CWD and BSE prions 
 Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University 
 Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein. These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species. The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time. We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations. We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. CWD is unique among prion diseases in its rapid spread in natural populations. BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species. This adaptation has consequences for surveillance of humans exposed to CWD. 
Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders

Zoonotic Potential of CWD Prions: An Update
Ignazio Cali1, Liuting Qing1, Jue Yuan1, Shenghai Huang2, Diane Kofskey1,3, Nicholas Maurer1, Debbie McKenzie4, Jiri Safar1,3,5, Wenquan Zou1,3,5,6, Pierluigi Gambetti1, Qingzhong Kong1,5,6 1Department of Pathology, 3National Prion Disease Pathology Surveillance Center, 5Department of Neurology, 6National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. 4Department of Biological Sciences and Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, 2Encore Health Resources, 1331 Lamar St, Houston, TX 77010
Chronic wasting disease (CWD) is a widespread and highly transmissible prion disease in free-ranging and captive cervid species in North America. The zoonotic potential of CWD prions is a serious public health concern, but the susceptibility of human CNS and peripheral organs to CWD prions remains largely unresolved. We reported earlier that peripheral and CNS infections were detected in transgenic mice expressing human PrP129M or PrP129V. Here we will present an update on this project, including evidence for strain dependence and influence of cervid PrP polymorphisms on CWD zoonosis as well as the characteristics of experimental human CWD prions.
PRION 2016 TOKYO In Conjunction with Asia Pacific Prion Symposium 2016 PRION 2016 Tokyo Prion 2016
Monday, May 02, 2016
*** Zoonotic Potential of CWD Prions: An Update Prion 2016 Tokyo ***
Saturday, April 23, 2016
Saturday, April 23, 2016 
 SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016 
 Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France 
 Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier. 
 To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant. 
 Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with ef?ciency comparable to that of cattle BSE. While the ef?ciency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 
 why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis. 
Title: Transmission of scrapie prions to primate after an extended silent incubation period)          
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 
 *** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 
 *** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

 O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
 Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 
 Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 
 *** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 
 ***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 
 ***is the third potentially zoonotic PD (with BSE and L-type BSE), 
 ***thus questioning the origin of human sporadic cases. We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 
***thus questioning the origin of human sporadic cases*** 
 ***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.



APHIS Bovine Spongiform Encephalopathy (BSE): Ongoing Surveillance Program Last Modified: Jan 5, 2017

Monday, January 09, 2017 

Oral Transmission of L-Type Bovine Spongiform Encephalopathy Agent among Cattle CDC Volume 23, Number 2—February 2017 



Thursday, July 24, 2014 

Protocol for further laboratory investigations into the distribution of infectivity of Atypical BSE SCIENTIFIC REPORT OF EFSA 

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. 

*** This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. 

*** It also suggests a similar cause or source for atypical BSE in these countries. *** 

see page 176 of 201 pages...tss 

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ; 

Wednesday, July 15, 2015 

Additional BSE TSE prion testing detects pathologic lesion in unusual brain location and PrPsc by PMCA only, how many cases have we missed?

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE. 

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only. 

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***

Posted by Terry S. Singeltary Sr. on 03 Jul 2015 at 16:53GMT

Chronic Wasting Disease CWD TSE Prion Cervid
Creutzfeldt Jakob Disease CJD
Diagnosis and Reporting of Creutzfeldt-Jakob Disease

Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.

Terry S. Singeltary, Sr Bacliff, Tex

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323.
26 March 2003 

Terry S. Singeltary, retired (medically) CJD WATCH 

I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc? 

The Lancet Infectious Diseases, Volume 3, Issue 8, Page 463, August 2003 doi:10.1016/S1473-3099(03)00715-1Cite or Link Using DOI 

 Tracking spongiform encephalopathies in North America 


 Xavier Bosch 

 “My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem.” 49-year—old Singeltary is one of a number of people who have remained largely unsatisfied after being told that a close relative died from a rapidly progressive dementia compatible with spontaneous Creutzfeldt—Jakob ... 

2 January 2000 

British Medical Journal 

U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well 

15 November 1999 

 British Medical Journal 

 vCJD in the USA * BSE in U.S. 

Suspect symptoms 

What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie? 

28 Mar 01 

Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America. Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD. 

"This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb... 

2001 FDA CJD TSE Prion Singeltary Submission 

Terry S. Singeltary Sr. Bacliff, Texas USA


Post a Comment

Subscribe to Post Comments [Atom]

Links to this post:

Create a Link

<< Home